

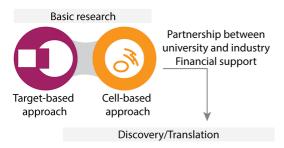
29.09.2025 - Plesso Navile - Bologna

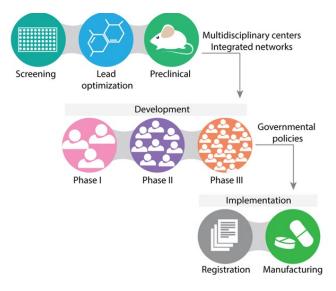
Giornata di presentazione dei programmi di Tesi di Laurea

LABORATORIO DI PROGETTAZIONE E SINTESI DI SMALL MOLECULES

GRUPPO DI RICERCA:

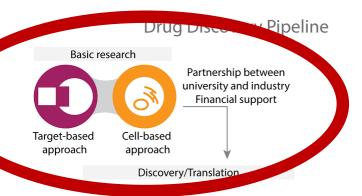
Prof. ssa Alessandra Locatelli Prof. ssa Rita Morigi Dott. Daniele Esposito




SINTESI DI SMALL MOLECULES

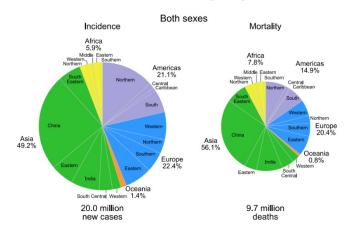
FABIT - Via Belmeloro 6, Bologna

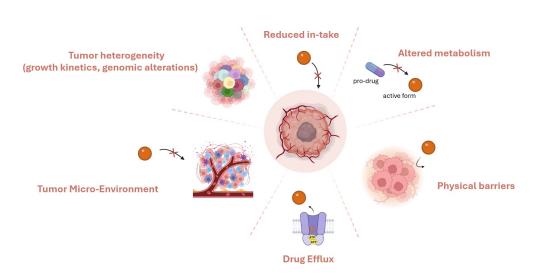
Drug Discovery Pipeline



SINTESI DI SMALL MOLECULES

Voi siete qui!
Il primissimo step per la scoperta di un nuovo potenziale farmaco



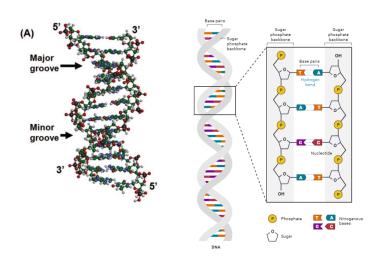


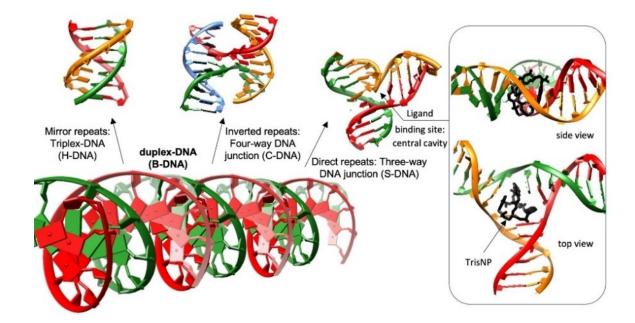
SINTESI DI SMALL MOLECULES

Quali sono i nostri target?

A POTENZIALE ATTIVITA' ANTITUMORALE

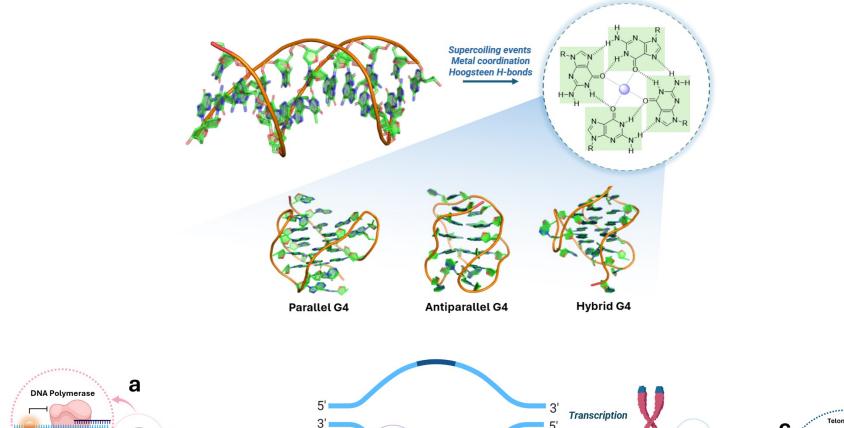
A POTENZIALE ATTIVITA'

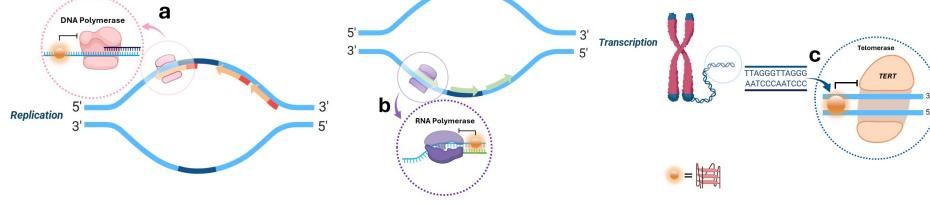

ANTIMICOTICA


ANTIBATTERICA

ANTIVIRALE

A POTENZIALE ATTIVITA' ANTITUMORALE


LIGANDI DI *STRUTTURE DNA G-QUADRUPLEX*

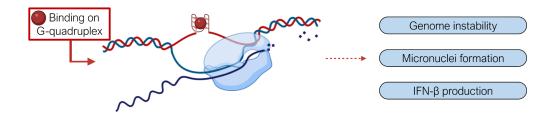


A POTENZIALE ATTIVITA' ANTITUMORALE

LIGANDI DI *STRUTTURE DNA G-QUADRUPLEX*

A POTENZIALE ATTIVITA' ANTITUMORALE

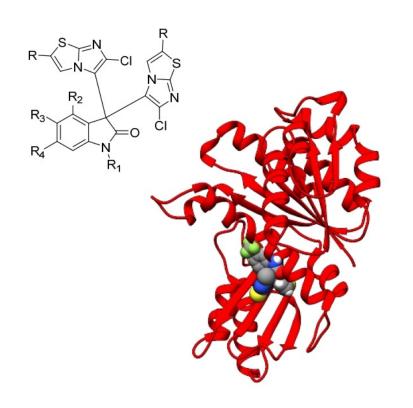
LIGANDI DI *STRUTTURE DNA G-QUADRUPLEX*

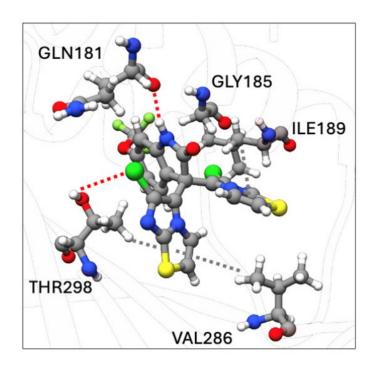

$$X \longrightarrow \mathbb{R}$$
 $X \longrightarrow \mathbb{R}$
 $X \longrightarrow \mathbb{R}$
 $X \longrightarrow \mathbb{R}$

$$R_1$$
 R_2
 R_3
 R_3
 R_3

$$R_3$$
 N
 R_2
 N
 R_3
 N
 R
 N
 R

$$R_4$$
 R_2 R_2 R_3 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_6 R_7 R_8 R_8


Il vostro contributo alla ricerca di nuove molecole in grado di interagire con il DNA



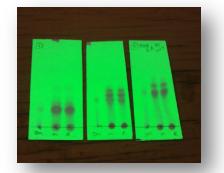
PROGETTAZIONE E SINTESI NUOVE LIBRERIE DI COMPOSTI

$$R_1$$
 N
 R_2
 N
 R
 R

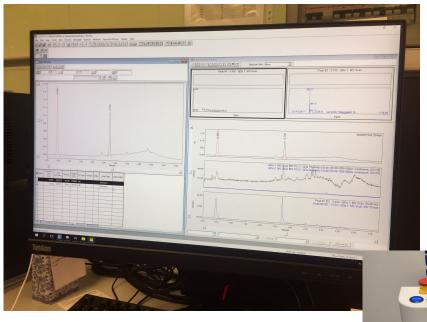
INIBITORI DI FtsZ

5. Work-up e Purificazione del prodotto

2. Impostazione della reazione

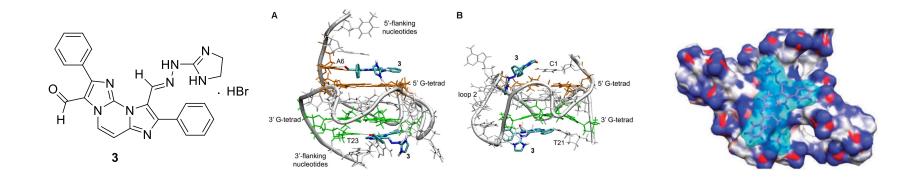

Il vostro percorso di tesi

1. Ricerca bibliografica Con quale reazione comincio?


3. Monitoraggio della reazione 6. Caratterizzazione

7. Supporto emotivo

UHPLC-MS


Varian 400 MHz

Bruker 600 MHz

In collaborazione con altri gruppi di ricerca:

STUDI DI MOLECULAR DOCKING

In collaborazione con altri gruppi di ricerca:

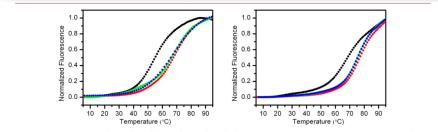
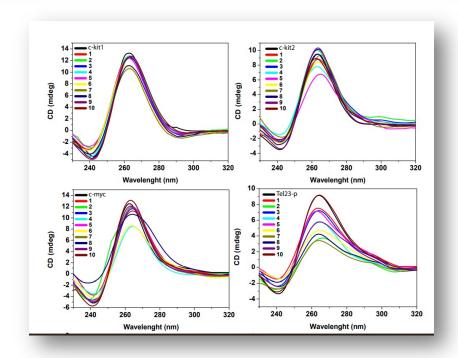
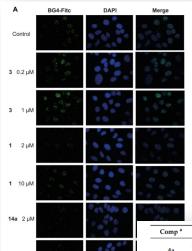




Figure 4. FRET-melting curves for F- Td_{2r} -Tp (left panel) and F-c-kit2-T (right panel). Experiments were carried out by using 0.2 μ M G4-forming oligonucleotides in the absence (black circles) and presence of 15 (2 μ M, red circles). Experiments in the presence of 15 were also performed by adding a large excess of ds12 duplex (5 and 10 μ M, green and blue circles, respectively).

SAGGI BIOFISICI

In collaborazione con altri gruppi di ricerca:

Comp "	Modes	Leukemia	NSCLC	Colon	CNS	Melanoma	Ovarian	Renal	Prostate	Breast	MG-MID
4a	GI ₅₀	3.98	6.76	4.68	4.37	4.90	6.76	4.90	5.01	5.62	5.13
	TGI	21.38	20.89	16.60	17.38	16.60	20.42	18.62	16.60	18.20	18.62
	LC ₅₀	79.43	51.29	43.65	45.71	45.71	53.70	47.86	43.65	50.12	51.29
4b °	GI ₅₀	2.69	3.98	4.27	2.19	2.40	2.75	2.40	3.09	2.45	2.88
	TGI	11.48	13.80	13.80	7.94	7.08	11.48	11.48	13.18	7.76	10.47
	LC ₅₀	75.86	41.69	38.90	63.10	20.42	44.67	33.11	43.65	30.20	36.31
4c	GI ₅₀	1.86	2.57	2.45	1.29	1.66	1.82	2.24	1.95	1.82	1.95
	TGI	7.59	7.59	6.76	3.31	3.89	5.13	7.59	4.79	4.79	5.62
	LC ₅₀	51.29	20.89	21.88	8.32	9.33	20.89	22.39	15.49	17.38	18.20
4d	GI ₅₀	2.04	2.51	2.57	1.78	1.82	2.40	3.24	3.31	2.40	2.63
	TGI	12.59	8.13	8.71	8.32	4.27	8.91	10.23	13.18	12.02	8.51
	LC ₅₀	93.33	28.84	28.18	38.90	12.02	30.90	32.36	45.71	46.77	30.90
4f c	GI ₅₀	1.48	3.55	2.95	2.88	2.45	4.27	4.37	2.14	3.31	3.09
	TGI	8.91	10.72	8.13	9.77	6.92	15.49	12.88	9.12	15.14	10.47
	LC50	100.00	33.88	22.91	33.88	23.44	46.77	31.62	37.15	51.29	37.15
4g	GI ₅₀	3.31	7.94	11.22	6.76	7.41	7.94	12.30	6.76	5.75	7.76
	TGI	20.42	30.90	45.71	38.90	27.54	50.12	51.29	70.79	50.12	38.90
	LC50	97.72	79.43	79.43	83.18	79.43	79.43	85.11	100.00	95.50	83.18
5b °	GI ₅₀	0.51	1.62	0.63	1.10	0.72	1.35	0.98	1.10	0.74	0.91
	TGI	3.16	8.32	1.95	4.57	2.29	6.61	3.63	5.25	5.89	4.07
	LC ₅₀	61.66	43.65	7.59	19.50	8.91	31.62	16.22	25.70	23.99	21.38
5c	GI ₅₀	0.56	2.04	0.89	1.05	0.89	1.62	1.23	2.04	0.89	1.15
	TGI	5.50	7.59	2.19	3.98	2.19	7.08	3.72	12.88	4.68	4.27
	LC ₅₀	100.00	25.12	5.01	17.38	5.01	19.50	12.88	50.12	12.30	14.79
5d °	GI ₅₀	0.55	2.95	1.58	2.19	2.09	2.95	2.75	2.51	2.00	2.04
	TGI	6.61	29.51	5.01	12.88	6.76	13.18	22.91	45.71	12.02	12.88
	LC ₅₀	100.00	77.62	20.89	56.23	25.70	75.86	89.13	100.00	66.07	57.54
5e	GI_{50}	2.95	3.98	2.63	2.19	2.14	4.79	6.17	2.69	2.57	3.24
	TGI	33.11	16.98	10.00	6.46	4.79	15.49	30.20	9.77	7.24	12.30
	LC ₅₀	100.00	47.86	44.67	28.18	15.85	54.95	69.18	56.23	41.69	45.71
5f	GI_{50}	0.87	2.69	1.29	1.66	1.74	2.45	2.40	1.62	1.74	1.82
	TGI	11.22	7.08	2.88	3.72	3.55	7.24	4.90	3.39	5.13	5.01
	LC ₅₀	100.00	21.88	8.13	8.71	7.94	23.99	10.47	7.08	21.88	15.14
8h °	GI ₅₀	5.49	5.54	5.54	5.59	5.39	5.30	5.55	5.30	5.47	5.48
	TGI	4.46	4.26	4.44	4.37	4.29	4.12	4.28	4.16	4.21	4.29
Vincristin-	GI_{50}	0.10	0.25	0.10	0.13	0.16	0.32	0.32	0.13	0.32	0.20
esulfate ^d	TGI	15.85	15.85	3.98	6.31	7.94	19.95	19.95	6.31	7.94	10.00
										and he	

^a Highest conc. = $100 \mu M$: only modes showing a value < $100 \mu M$ are reported. The compound exposure time was 48 h, ^b Mean graph midpoint, i.e., the mean concentration for all cell lines, ^c Mean of two separate experiments, ^d Highest conc. = $10^{-3} M$.

SAGGI BIOLOGICI

Per guardare i nostri lavori

ALCUNE INFORMAZIONI

Per cominciare il laboratorio di tesi è necessario:

aver superato tutti gli esami dei corsi con laboratorio

Durata della tesi: almeno 6 mesi

Impegno giornaliero dal lunedì al venerdì

Per curiosità e informazioni:

Prof.ssa Alessandra Locatelli: alessandra.locatelli@unibo.it

Prof.ssa Rita Morigi: rita.morigi@unibo.it

Dottorando Daniele Esposito: daniele.esposito6@unibo.it

dalila.bassi@studio.unibo.it milla.mainenti@studio.unibo.it

Sito web del gruppo per approfondire le tematiche di ricerca

Grazie per l'attenzione e in bocca al lupo!